Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae.
نویسندگان
چکیده
Introduction of an active xylose utilization pathway into Saccharomyces cerevisiae, which does not naturally ferment pentose sugars, is likely to have a major impact on the overall cellular metabolism as the carbon introduced to the cells will now flow through the pentose phosphate pathway. The metabolic responses in the recombinant xylose-fermenting S. cerevisiae were studied at the proteome level by comparative two-dimensional gel electrophoresis of cellular proteins within a pH range of 3-10. Glucose-limited chemostat cultivations and corresponding chemostat cultivations performed in media containing xylose as the major carbon source were compared. The cultivations were studied in aerobic and anaerobic metabolic steady states and in addition at time points 5, 30 and 60 min after the switch-off of oxygen supply. We identified 22 proteins having a significant abundance difference on xylose compared to glucose, and 12 proteins that responded to change from aerobic to anaerobic conditions on both carbon sources. On xylose in all conditions studied, major changes were seen in the abundance of alcohol dehydrogenase 2 (Adh2p), acetaldehyde dehydrogenases 4 and 6 (Ald4p and Ald6p), and DL-glycerol 3-phosphatase (Gpp1p). Our results give indications of altered metabolic fluxes especially in the acetate and glycerol pathways in cells growing on xylose compared to glucose.
منابع مشابه
Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae
BACKGROUND The production of ethanol and other fuels and chemicals from lignocellulosic materials is dependent of efficient xylose conversion. Xylose fermentation capacity in yeasts is usually linked to xylose reductase (XR) accepting NADH as cofactor. The XR from Scheffersomyces stipitis, which is able to use NADH as cofactor but still prefers NADPH, has been used to generate recombinant xylos...
متن کاملInhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation
Lignocellulose-derived inhibitors have negative effects on the ethanol fermentation capacity of Saccharomyces cerevisiae. In this study, the effects of eight typical inhibitors, including weak acids, furans, and phenols, on glucose and xylose co-fermentation of the recombinant xylose-fermenting flocculating industrial S. cerevisiae strain NAPX37 were evaluated by batch fermentation. Inhibition ...
متن کاملChemical and Synthetic Genetic Array Analysis Identifies Genes that Suppress Xylose Utilization and Fermentation in Saccharomyces cerevisiae
Though highly efficient at fermenting hexose sugars, Saccharomyces cerevisiae has limited ability to ferment five-carbon sugars. As a significant portion of sugars found in cellulosic biomass is the five-carbon sugar xylose, S. cerevisiae must be engineered to metabolize pentose sugars, commonly by the addition of exogenous genes from xylose fermenting fungi. However, these recombinant strains ...
متن کاملArabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway
BACKGROUND Sustainable and economically viable manufacturing of bioethanol from lignocellulose raw material is dependent on the availability of a robust ethanol producing microorganism, able to ferment all sugars present in the feedstock, including the pentose sugars L-arabinose and D-xylose. Saccharomyces cerevisiae is a robust ethanol producer, but needs to be engineered to achieve pentose su...
متن کاملGenetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose.
Xylose is one of the major fermentable sugars present in cellulosic biomass, second only to glucose. However, Saccharomyces spp., the best sugar-fermenting microorganisms, are not able to metabolize xylose. We developed recombinant plasmids that can transform Saccharomyces spp. into xylose-fermenting yeasts. These plasmids, designated pLNH31, -32, -33, and -34, are 2 microns-based high-copy-num...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Yeast
دوره 20 4 شماره
صفحات -
تاریخ انتشار 2003